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Introduction

Let Hol(ID) be the space of all holomorphic functions on the unit disc ID in the complex plane C
and let dA denote the normalized Lebesgue area measure on D. The standard Bergman space
AZ, o> —1, is given by

A= {fe Hol(D) : |fllo == ( A |f(z>|2dAa(z))1/2 < oo}7

where dAq(z) := (a.+1)(1 — |z|2)*dA(z). Recall that A2 is a reproducing Kernel Hilbert space

with the kernel 1

K(z,w)= (w2’

z,weD.



The orthogonal projection from L2 := L2(ID, dA,,) onto A2 will be denoted by Py.

Puf(2) :/D H(w)K (2, W) dAe(w) :./H)%d&x(w).
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Puf(2) :/D H(w)K (2, W) dAe(w) :./H)%d&x(w).

Let ¢ € A2. The linear transformation Hy = Mg — Pa Mg
Hgf = 0f — Po(61),

is densely defined operator from A2 into L2 © A3 which is called the (big) Hankel operator with
symbol ¢. An integral formula of Hq; is

Hpf(z2) = 0(2)(f.Kz) — (0f.Kz)

-

Lq;fxl( )dAx(w), zeD.

Ae



Axler ('86) proved that Hq—, is bounded on A(zx if and only if ¢ belongs to the Bloch space B

B:= {6 € Hol(D) : sup(1— |Z|2)\¢'(z)\ < oo},

|z]<1
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And Hq; is compact on Aﬁ if and only if ¢ belongs to the little Bloch space By

Boi= {§ SHoI(D): lim (1 |22)[¢/(2)| = 0}



Axler ('86) proved that Hq—, is bounded on A(zx if and only if ¢ belongs to the Bloch space B

B:= {6 € Hol(D) : sup(1— |Z|2)\¢'(z)\ < oo},

|z]<1

And Hq; is compact on Aﬁ if and only if ¢ belongs to the little Bloch space By
By := {0 €Hol(D): lim (1—|z]?)|¢(2)| =0}.
|z| =1~
It is also easy to see that Hq; is a Hilbert Schmidt operator if and only if ¢ € D, where

D :={p € Hol(D) : ¢’ € L3(D)},

is the Dirichlet space.



Idea of the proof :

. (1 _ ‘W‘2)1+(X o _
The function us(z) = / f(w)mdA(w) satisfies dur = f.
D _

We have B o _ .
OHg(f) = (®F— Po(®)) =" (%),

and Hg(f) is the minimal solution (in L2) of (x). Then

HH‘g(f)HgS/Q\f(Z)Iz\¢'(Z)\2(1—\Z|2)2(Z)dAa(Z): e 7112

where

dug(2) = (1= |2*)?(0/ (2) FdAa(2),

and Jj,, is the embedding operator from A3, into L2 (ug).

For the converse, it suffices to remark that

(HgKa)(2) = (0(2) — () Ka(2), z.2€Q.



1988, Arazy, Fisher and Peetre proved that if p > 1, Hq; € Sp if and only if ¢ € By, where

_dA(2)

B, = {¢€H01(ID)):/D(1*|Z\2)p|¢l(z)| (—122)2 |2)2

is a Besov space.



1988, Arazy, Fisher and Peetre proved that if p > 1, Hq; € Sp if and only if ¢ € By, where

_dA(2)

B, = {¢€H01(ID)):/D(1*|Z\2)p|¢l(z)| (—122)2 |2)2

is a Besov space.

They also proved that if Hq—, € Sy, then Hq; =0, thatis ¢ = cst.



1988, Arazy, Fisher and Peetre proved that if p > 1, Hq; € Sp if and only if ¢ € By, where

By = {q)eHol(ID)):/DU*|Z\2)p|¢l(z)| (1dA‘(z|l)2 oo}

is a Besov space.
They also proved that if Hq—, € Sy, then Hq; =0, thatis ¢ = cst.
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i sk(Hy) = O(log(n+2)).
k=1



1988, Arazy, Fisher and Peetre proved that if p > 1, Hq; € Sp if and only if ¢ € By, where

_dA(2)

By = {q)eHol(ID)):/DU*|Z\2)p|¢l(z)| (1 EBE <}

is a Besov space.

They also proved that if Hq—, € Sy, then Hq; =0, thatis ¢ = cst.

On the other hand they proved that if ¢ € L' (dA) then
n
Z O(log(n+2)).

In this talk we are interested in the behavior of the singular values of Hy, ;

sn(Hg) =<7 (intermsof ®).



Weighted Bergman spaces

Let © be a domain of C. We denote by Hol(£2) the class of all holomorphic functions on 2.
Letw: Q — (0,) be a continuous weight on .

The weighted Bergman space associated with ® is given by

1/2
A= tremo@): Il = ([ IFoa)) - <=k

where dAy(2) = 0(z)dA(2).

Aﬁ) is a reproducing Kernel space. The Kernel of A(ZD will be denoted by K.

The Hankel operator Hq; acting on A2, induced by ¢ € Hol(2) is given by
Hy(f) = 0f — Po(91).

We suppose in the sequel that I-@ is densely defined on Aﬁ).



The class of weights 7/.

Let Q be a domain (bounded or not) of C and let 92 denotes the boundary of Q.

Let 0.2 = 99 if Q is bounded and 0.2 = 92U {0} if Q2 is not bounded.

In what follows, we suppose that the kernel K of A2 satisfies
lim ||K;|| =
230002 IFz

Forevery € Q, |K({,z)|=o(||K:l])  (z— 0-%2).

Let
1

?(2)(=15(2) = @K’ (zeQ).

We say that @ € W if, in addition, there exist two constants a, C > 0 such that for z,{ € Q
satisfying |z — {| < aty(z) we have :

IRl < CIKE 2l 5H(©) <(2) < Co(E).
and

t(2z) = O(min(1, dist(z,0.))).



Examples

» Standard Bergman spaces on the unit disc D.
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» Harmonically weighted Bergman spaces on ID. Let ® > 0 and harmonic. One can prove
that ® € W and
(z) =1z zeD

(O.E, I. Marhrhich, H. Mahzouli and H. Naqos J.M.A.A 2018)



Theorem

Let® € W. We have

1. Hg is bounded on A%, if and only if sup(2)|¢'(2)| < .
zeQ

2. Hgis compacton A ifandonly it lim 1(z)[¢'(z)| = 0.
2€Q =00

3. Letp>1. Then Hy € Sp(A3) if and only if

0@ P 2(2)aA) < .



Starting point

Lemma

Let (an)n>1,(bn)n>1 be two decreasing sequences such that,LiLn anp = nlgn bn = 0 and that
(n"bp) is increasing for somey € (0,1).

Suppose that there exists B > 0 such that

Z h(bs/B) < Z h(an) < Z h(Bbn),
n>1

n>1 n>1
for all increasing convex function h. Then

an < bp.

That is, there exists C > 0 such that

bn/C < ay < Cby.



We will use the lemma as follows.

Lemma

Letp>1 andletp : [0,4o] — [1,+oo[ be an increasing positive function such that p(x)/x" is
decreasing for somey € (0,p). Let T be a positive compact operator. Suppose that there exists

B > 0 such that

Zh<8p1(n)) =TT = B, hlha(T)) = Z“(pi))‘

n>1 n>1 n>1

for all increasing functions h such that h(t°) is convex. Then

An(T) =< 1/p(n).



Toeplitz operators

The Toeplitz operator T, acting on Aﬁ,, induced by a positive Borel measure u on €2 is given by

T,uf(z):/S_Zf(C)K(Z7C)0)(C)d/~l(€)'

Note that

(Th.0) = [ IHQ)Podu(t).

It is known that for @ € W, there exist B, > 0 and (z), C Q such that
> (D(zn,d%w(2n)))n is a covering of 2 of finite multiplicity.
> D(zp, %Tw(z,,)) are pairwise disjoint.

Such family (D(zp,8%»(2n)))n is called a Lattice of Q2 with respect to ®.



Boundedness and compactness :

Fix a lattice (Rn)n of © with respect to . One can see that
» T,isbounded <= u(Rn)/A(Rn) is bounded.

» T, is compact <= u(Rn)/A(Rn) — 0.



Boundedness and compactness :

Fix a lattice (Rn)n of © with respect to . One can see that

» T,isbounded <= u(Rn)/A(Rn) is bounded.

» T, is compact <= u(Rn)/A(Rn) — 0.
The key of the proof is the following mean inequality

1 .
Q) Pe(C) < 7/ f(2)Pw(2)dA(z)  ((€Rpb>1),
A( Hn) bR,

with the notation (bD(z,r) = D(z, br)).

If T, is compact, (an(u))n will denote a decreasing rearrangement of (u(Rs)/A(Rn))n.



Trace estimates for Toeplitz operators

Theorem (O. E. and M. Elibbaoui 2018)

Let u be a positive Borel measure on Q s.t. T, is compact on A2 Let h be increasing, h(0) = 0
and h(tP) is convex for some p > 1. Then, there exists B > 1, which depends on ® and p s.t.

Th (%an(y)> < L h0n(T)) < X h(Ban(u)-



Trace estimates for Toeplitz operators

Theorem (O. E. and M. Elibbaoui 2018)

Let u be a positive Borel measure on Q s.t. T, is compact on A2 Let h be increasing, h(0) = 0
and h(tP) is convex for some p > 1. Then, there exists B > 1, which depends on ® and p s.t.

Th (%an(y)) < L h0n(T)) < X h(Ban(u)-

As consequence we obtain
Theorem

Let A> 0 and let p be an increasing positive function s.t. p(x)/x” is decreasing for some A > 0.
Let u be a positive Borel measure on 2 such that T, is compact. Then

1. Mn(Tu) = O(1/p(n)) <= an(u) < O(1/p(n)).

2. M(Ty) x1/p(n) <= an(u) < 1/p(n).



Remarks

> The growth condition on p is, in some sense, necessary. Indeed, let
Pp.c(n) = exp(—cloghn) B,c>o0.
From Theorem A, it is clear that if f < 1 then
An(Tu) < 1/ppc(n) <= an(u) < 1/ppc(n).

While, if > 1 one can construct a Toeplitz operator 7, such that

Ao(Tu) =1/ppo(n) and limsup ?f&"f

= Ho0
P One can construct two positive Borel measures u and v on the unit disc D such that
an(u) = ap(v) and limsupi,(T,)/An(Ty) =oo.
n—oo

So, it is somewhat surprising that the behavior of Xn(Ty), in our case, depends only on
ap(u) and not on the positions of (Rp(u)).



Trace estimates for Hankel operators

Notations :
dA(z)

Bol2)i= 5

| TI=(TT)"2.

Theorem

Suppose that Hq, is compact and let h be an increasing convex function such that h(0) = 0. Then

Jor (G @) ) dhote) < T(n1H61) < [ 1(B)rulz) dha2)

where the constant B > 0 depends only on .



Idea of the proof :

Upper estimate : Tr (h(%\))) < /D h (Bl0'(2)[t0(2)) dho(2).

We have B o B o
8!—%(f):8(<bf—Pm(¢)):¢/f (%)-

Then H(f) is the minimal solution (in L2) of (x). Hormander type estimates for d—equation ,
imply
1M1 S [ 1HIP10'(2) e (2)oa(2):

This means that

Hiks < Ty where duy(2) = %5(2)0/(2) P dAa(2).
Then
s,z,(Hq;) Sha(Ty)



Lower estimate : /Dh (lB \q)'(Z)ITm(Z)) dAhe(z) <Tr (h(\/"a\)))

We have
(H;Ka)(2) = (8(2) — 0(a))Ka(2), z.a€ .
Then

M@ @) S [ [ 80— o)) dho(©dra(w).
h Mg ()] dAe(L)d
/bﬂn/bﬂn TK(EG w)| o(8)dho(w)
o [ Heh(w)l
/bF{n/bR,,h IRAIEA dhe(8)dho(w).
Let I-'LKZ; anfn n We have
|HgK (w)] [c(Q)] lgk(w)] 1 QP |gk(w)[2
h<'Ké“Kw|> (Z "Nl 1Kl >§2;< kP T Kl )“(sk)'

Combining these inequalities, and after integration we obtain the result.

A




Consequence

Let Rg',m be the decreasing rearrangement of Te,|¢'| with respect to A,. Namely,

Ry, (x) :=sup{t € (0,]t¢[|] : Ro.w(t) > x},
where
Rpo(t) :=Ae({z € Q: 1(2)|0'(2)] > t}).
Remark that

(0 @)a(2) dhal2) = L (Riw(m)



Consequence

LetR;

o.0 D€ the decreasing rearrangement of Te 0| with respect to A,. Namely,

Ry (x) :=sup{t € (0,]t¢'||] : Ro.w(t) > x},

where

Rpo(t) :=Ae({z € Q: 1(2)|0'(2)] > t}).
Remark that

(0 @)a(2) dhal2) = L (Riw(m)
Theorem

Let p be an increasing function such that p(x)/x" is decreasing for somey € (0,1) then

sn(Hg) < 1/p(n) <= Ry,(n)=1/p(n).



Radial weighted Bergman spaces on the unit disc

The singular values of Hz will play an important role in the study of the decay of singular values
of Hankel operators with anti-analytic symbols. Note that in the radial case we have

Hif‘F( ): ( — = mm(n)i n>1.
2 271z llz=02 7 N2l llz"l1”

So, the sequence of the singular values of H; is exactly the sequence (/Mg (N))n>1-

The standard Bergman spaces A2, which correspond to @ (2z) = (1+a)(1 — |z[?)%, with
o > —1. In this case, we have

12| _ T(n+)r(a+2)
Qo rn+o+2) °’
and
o, () = o+ 1 o .
“ (n+a)(n+oa+1) (n+1)2
Then

Va+1
n+1°

sn(""%) ~



Let B> 0 and let ® be such that 13,(2) < (1 —|z[?)?*B, one can consider for example

o(z) = (1-|z)%exp (7(1 - |z|2)—ﬁ) L a1

We have
Ryo(t) = Lo{zeD: 3(z)>t}
_ A
{2eD: 2(2)>1 (1 —|2[2)2+B
g / o
T Jpre(0): (1-r2tBzry (1-1)2HB
_2(14p)
= t 2B,
Then 1 2(1+B)
+
+ - —
Rz’w(t)A 75 where p = 24P ,
and



We have the following result.

Theorem

Let ® € W be a radial weight. Let ¢ be an analytic function such that Hq—, is compact. Then

sn(Hz) = o(sn(Hz)) == Hz=0.

Suppose that T, (2) < (2 —|2[2)2*B, then
sn(Hg) = o(i/n'?y = Hy = 0.

2(1+p)

Here p = pEu i



Now we are interested in the description of the class of symbols ¢ such that

so(Hy) = O(sn(H)).



Now we are interested in the description of the class of symbols ¢ such that

so(Hy) = O(sn(H)).

Theorem

LetB > 0 and let o such that 13,(z) < (1 —|z[2)2B. Then,

>

solHe) =< 1/n'/?, p= Z(Q‘Tﬂf)

sa(Hg) =0(1/n'/P) = ¢/ € HP.



Idea of the proof of : ¢’ € HP = sp(H;) = o(1/n'/Py.
It suffices to prove that R  (x) = O(1/xP). Thatis Re (1) = O(1/1°).
Let U be the non tangential maximal function associated with |¢'|. It satsfies

|0 (re®)] < U(e®) a.e. onT and U e LP.

Then
Ro o(t) = ho({re® € D : 1o (r)[0/(re®)| > t})
ho({re® e D : 1, (r)|UE®)| > t})

ar
 Jrena(nu(e®)) =t} (1)

// o o Ul
r(1— r‘+ﬁ/2>c ) (1—1’)2+[5 o



Assymptotics

Pb : Is it possible to obtain the exact asymptotic behavior of s,,(Ha) for some particular ¢ ?

First let ¢(z) = z. For a radial weight ®, the sequence of the singular values of Hz is

<\|z"+1|\2 12" )”2
llznfz flzn=T
> The standard Bergman space 0y (2z) = (1 —|z|?)% :

Vo1
n+1

n

sn(Hg) ~ ; N —> 0.
> For the weight o given by

o

o(z) =exp <_(Iog1)5> , o, B>0.
|22

2(1+
Recall that t2,(z) < (1 —|2[2)?*P and s,(Hz) = 5, where p = (27[33)



e on o _ /1 2n o
_ % A — r - | 2rar
Iz = [ 12 exp( (log1)s> @)=, exp( (I0g,12)[‘>

|22
oo o
= e —(n+1)x— —) dx.
/0 Xp( (n+1) B
af 1/1+B . . o
Let x, := (m) be the minimum of the function (n+1)x + 5. After the change of
variable u = X;:”, we get
o +e o
[|2"]12 = xnexp | —(n+1)x0 — —= / exp | ——h(u) | au,
x[3 -1 xB
n n
where h(u) = Bu+ m — 1. Then Laplace Theorem, gives
oo 2n
—th dur~ [ ——=, t— oo
[, epl-mw)au~ |G 1ot

Finally, we obtain

Y | (aB)!/ 1P
sn(Hz) ~ —5 7 wherey=/—"——.
e = 1+



Theorem

LetB >0 and let ® € W be a radial weight such that ©5(z) < (1 — |2|?)2*P. Then,

sn(Hy) = o(1/n'P)y = ¢ eHr <p: 72(21_:—136))

Moreover, if s,(Hz) ~ -5 then
nb

c
() ~ —5 10l



Theorem

LetB >0 and let € W be a radial weight such that t2,(z) < (1 — |z[2)2*B. Then,

So(Hy) = 0(1/n'P) = ¢ e HP (o=202)
Moreover, if sp(Hz) ~ % then
nkP
4 /
() ~ — 19/

In the case of the classical Bergman space A? (o = 0).

> M. Dostanic (2004) proved that if ¢ is analytic in a neighborhood of D, then sn(H‘g) ~ H¢,’1H1 .

» Englis and Rochberg (2009) proved that if ¢’ € H', then ,‘-@ is in the Dixmier class and that
the Dixmier trace is given by

(| H [) = [10/]]1-

The proof uses some ideas of M. Dostanic’s proof, a result on asymptotic spectral orthogonality
due to Birman and Solomyak (see the paper by A. Pushnitski : Spectral asymptotics for Toeplitz
operators and an application to banded matrices, (2018)) and the theorem of trace estimates of
Hankel operators.



Thank you for your attention.



